How to use Edward library for probabilistic modeling with Tensorflow and GPy to study asymptotic connections between Multi-Layer Perceptrons (neural nets) and Gaussian processes?

Computing_With_Infinite_Networks_using_Edwards_and_GPy

Numerical verification of the asymptotic connections between Multi-Layer Perceptrons (neural nets) and Gaussian processes.

Authors: Dr. Eren Metin Elçi and Ravinder Kumar

Is there a connection between Multi Layer Perceptrons (neural nets) and Gaussian processes? At least theoretically some supporting arguments were given by Christopher K. I. Williams in https://papers.nips.cc/paper/1197-computing-with-infinite-networks.pdf

In this tutorial we use use Edward (library for probabilistic modelling), http://edwardlib.org, which is compatible with Tensorflow. We further use the Gaussian Process implementation provided by GPy.

As a side product, we show how to create a custom activation unit for neural networks and how to construct custom Gaussian process kernels.

Have fun and if you require the jupyter notebook for this project contact us pyboot@gmail.com!

In [1]:
%matplotlib inline

import edward as ed
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

from edward.models import Normal
from tensorflow.python.framework import ops
plt.style.use('ggplot')
from scipy.stats import norm
from scipy.special import erf

import GPy # Gaussian processes (possible overkill to use GPy for our purpose, but nice to know how to use)
from scipy.stats import ttest_ind_from_stats

Construct the "Sigmoidal" activation function as refered to in the above paper

Regarding the construction, see https://stackoverflow.com/questions/39921607/how-to-make-a-custom-activation-function-with-only-python-in-tensorflow

Note that [writing $CDF(x;\mu;\sigma)$ for the cumulative distribution function of a normal with mean $\mu$ and standard deviation $\sigma$] we have: $$ \Phi(z) = 2\cdot CDF(z;0;1/\sqrt{2}) -1 $$ hence $$ \partial_z \Phi(z) = 2p(z;0;1/\sqrt{2}) $$ where $p(z;\mu;\sigma)$ is the corresponding pdf of a normal with mean $\mu$ and stdev $\sigma$.

In [2]:
# construct an activation function that equals to the Sigmoidal mentioned in the Williams paper
np_d_myfun_32 = lambda x: 2*np.sqrt(2)*norm.pdf(x*np.sqrt(2)).astype(np.float32)
def tf_d_f(x,name=None):
    #Because of WARNING tf.op_scope(values, name, default_name) is deprecated, use tf.name_scope(name, default_name, values)
    with tf.name_scope( name, "d_myfun",[x]) as name:
        y = tf.py_func(np_d_myfun_32,
                        [x],
                        [tf.float32],
                        name=name,
                        stateful=False)
        return y[0]
def py_func(func, inp, Tout, stateful=True, name=None, grad=None):

    # Need to generate a unique name to avoid duplicates:
    rnd_name = 'PyFuncGrad' + str(np.random.randint(0, 1E+8))

    tf.RegisterGradient(rnd_name)(grad)  # see _MySquareGrad for grad example
    g = tf.get_default_graph()
    with g.gradient_override_map({"PyFunc": rnd_name}):
        return tf.py_func(func, inp, Tout, stateful=stateful, name=name)
def myfungrad(op, grad):
    x = op.inputs[0]

    n_gr = tf_d_f(x)
    return grad * n_gr  
np_myfun_32 = lambda x: np.asarray(erf(x)).astype(np.float32)

def tf_myfun(x, name=None):

    with tf.name_scope(name, "myfun",[x]) as name:
        y = py_func(np_myfun_32,
                        [x],
                        [tf.float32],
                        name=name,
                        grad=myfungrad)  # <-- here's the call to the gradient
        return y[0]
In [3]:
def neural_network(x, W_0, W_1, b_0, b_1):
  h = tf_myfun(tf.matmul(x, W_0) + b_0) #from input to hidden layer
  h = tf.matmul(h, W_1) + b_1 #from hidden to output layer
  return tf.reshape(h, [-1])
In [4]:
ed.set_seed(42)
NDRAWS=100
NPOINTS=1000
D = 1   # number of features 
H = 10000 # number of hidden units
omega=1
#sigma = .01
sigma_b_0 = 2
sigma_b_1 = .001 # make Eq. (9) in the paper simpler
sigma_W_0 = 10
sigma_W_1 = omega*1./np.sqrt(H) # required for convergence to the corresponding GP, see paper
In [5]:
qW_0 = Normal(loc=tf.Variable(tf.zeros([D, H])),
              scale=tf.Variable(sigma_W_0*tf.ones([D,H])))
qW_1 = Normal(loc=tf.Variable(tf.zeros([H, 1])),
              scale=tf.Variable(sigma_W_1*tf.ones([H,1])))
qb_0 = Normal(loc=tf.Variable(tf.zeros([H])),
              scale=tf.Variable(sigma_b_0*tf.ones([H])))
qb_1 = Normal(loc=tf.Variable(tf.zeros([1])),
              scale=tf.Variable(sigma_b_1*tf.ones([1])))
In [6]:
# Sample functions from variational model to visualize fits.
rs = np.random.RandomState(0)
inputs = np.linspace(-5, 5, num=NPOINTS, dtype=np.float32)
x = tf.expand_dims(inputs, 1)
mus = tf.stack(
    [neural_network(x, qW_0.sample(), qW_1.sample(),
                    qb_0.sample(), qb_1.sample())
     for _ in range(NDRAWS)])
In [7]:
sess = ed.get_session()
tf.global_variables_initializer().run()
outputs = mus.eval()

fig,ax = plt.subplots()
for i in range(10):
    ax.plot(inputs, outputs[i,:])
ax.set_ylim(-2,2)
ax.set_xlim(-5,5)
plt.show()

Now build the corresponding GP kernel and draw some samples from it

For an explanation how to build a custom kernel in GPy, see http://gpy.readthedocs.io/en/deploy/tuto_creating_new_kernels.html

In [8]:
from GPy.kern import Kern
from GPy import Param
class MyKernel(Kern):
    def __init__(self,input_dim,sigma_bias=1., sigma_weights=1.):
        super(MyKernel, self).__init__(input_dim, None,'my_kernel')
        assert input_dim == 1, "For this kernel we assume input_dim=1"
        self.sigma_bias = Param('sigma_bias', sigma_bias)
        self.sigma_weights = Param('sigma_weights', sigma_weights)
        self.link_parameters(self.sigma_bias, self.sigma_weights)
        def k(x,x2):
            tmp_num = 2*(self.sigma_bias**2 + self.sigma_weights**2*x*x2)
            tmp_denum1 = 2*(self.sigma_bias**2 + self.sigma_weights**2*x**2)
            tmp_denum2 = 2*(self.sigma_bias**2 + self.sigma_weights**2*x2**2)
            return 2*np.arcsin(tmp_num/np.sqrt((1+tmp_denum1)*(1+tmp_denum2)))/np.pi
        self.mat_k =  np.vectorize(k)
    def K(self,X,X2):
        X = X.flatten()
        if X2 is None: 
            X2 = X
        return self.mat_k(X[:,np.newaxis],X2)
    def Kdiag(self,X):
        X = X.flatten()
        return self.mat_k(X,X)
In [9]:
# test
myk = MyKernel(1,sigma_b_0,sigma_W_0)
myk.K(np.array([1,2,3])[:,np.newaxis]),myk.Kdiag(np.array([1,2,3])[:,np.newaxis])
Out[9]:
(array([[ 0.93769896,  0.92059254,  0.9046565 ],
        [ 0.92059254,  0.9683433 ,  0.96581015],
        [ 0.9046565 ,  0.96581015,  0.97883122]]),
 array([ 0.93769896,  0.9683433 ,  0.97883122]))
In [10]:
KERNEL=myk
x=np.linspace(-5,5,NPOINTS)
cov = KERNEL.K(x[:,np.newaxis])
rvs = np.random.multivariate_normal(np.zeros_like(x), cov, size=NDRAWS)
fig,ax = plt.subplots()
for i in range(10):
    ax.plot(x, rvs[i,:])
ax.set_ylim(-2,2)
ax.set_xlim(-5,5)
plt.show()

Calculate covariance matrix of the MLP & GP prior draws

In [11]:
X_mlp = np.asarray(outputs)
mn_X_mlp = X_mlp.mean(axis=0)
cov_X_mlp = np.cov(X_mlp.T)
mn_X_gp = rvs.mean(axis=0)
cov_X_gp = np.cov(rvs.T)
In [12]:
fig, axs = plt.subplots(ncols=3,figsize=(15,5))
axs[0].matshow(cov)
axs[0].set_title("Exact Kernel")
axs[1].matshow(cov_X_mlp)
axs[1].set_title("Estimated Bayesian MLP Kernel")
axs[2].matshow(cov_X_gp)
axs[2].set_title("Estimated GP Kernel")
plt.show()
In [13]:
cov[1,1], cov_X_mlp[1,1], cov_X_gp[1,1]
Out[13]:
(0.98725336287310583, 1.0425707880171857, 1.0354604877953575)

Boostrap covariance matrix calculation and use standard deviation (error) to conduct a hypothesis test that a random position in the covariance matrices of GP and bayesian MLP stem from the same distribution

In [14]:
def bootstrap_covariance(X,nboot=100):
    nsamples, nfeatures = X.shape
    cov_ = np.empty((nboot,nfeatures, nfeatures))
    for i in range(nboot):
        sub_features = np.random.randint(0, nsamples, size=nsamples)
        X_ = X[sub_features,:]
        cov_[i,...] = np.cov(X_.T)
    cov_m = np.mean(cov_, axis=0)
    cov_error = np.std(cov_, axis=0)/np.sqrt(nboot)*np.sqrt(nsamples/(nsamples-1.))
    
    return cov_m, cov_error
        
In [15]:
cov1, cov_error1 = bootstrap_covariance(X_mlp)
i,j = np.random.randint(0, NPOINTS,size=2) # probe for a random position in the coveriance matrices of GP and Bayesian MLP
m1,s1 = cov1[i,j], cov_error1[i,j]
cov2, cov_error2 = bootstrap_covariance(rvs)
m2,s2 = cov2[i,j], cov_error2[i,j]
#This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values.
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html
# https://en.wikipedia.org/wiki/Welch%27s_t-test
t2, p2 = ttest_ind_from_stats(m1, s1, 100,
                              m2, s2, 100,
                              equal_var=False)
print("(%d,%d): ttest_ind_from_stats: t = %g  p = %g" % (i,j,t2, p2))
(55,175): ttest_ind_from_stats: t = 4.78863  p = 3.2923e-06

Comments

Post a Comment

Popular posts from this blog

Writing a loop first time in python

Beginning with a python program: The tail